
L ZA8 797 ANSMNIRICA ~ uD FPLAN- DAJ REPRESENTATIONS or i/i
~ASCL AND OAIPAN CO.. .(U) ~u inR - fH STATE UNIV NEW4
RU W IC< NJ CONTO NDCMU

.N:LA::-IFIED AF AOBERTSON E. AL.JN8 COL-967G F' 2/ L

IND

. .. 1 .0 2.5.

flI.l II,

#CROCOPY RESOLUrlON lEST C HART

3- 6

F il

COGNITION " f
AND

COMPUTING
LABORATORY
lReport No. CCL-0687-0

00

IAN EMPIRICAL STUDY OF PLAN-BASED REPRESENTATIONS
OF PASCAL AND FORTRAN CODE

Scott P. Robertson
Chiung-Chen Yu

Department of Psychology
R utgers University

Busch Campus
New Brunswick, NJ 08903

June 1987

Sponsored by:

Perceptual Science Programs
(Code 1142PS) i.,'3 ', "
Office of Naval Research
Contract No. N00014-86-K-0876
Work Unit No. NR 4424203-01

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED.
REPRODUCTION IN WHOLE OR IN PART IS PERMITTED FOR ANY
PURPOSE OF THE UNITED STATES GOVERNMENT.

Unclassified

REPORT DOCMENTATION PAGE aeRDSTO UCg~tORM

INe uMas S. GOWT ACCESSION 0NO J. 0j CjpaC.-S CATALOg MUNggn

CCL-0687-OO 17 -

S. tTtLE orReoo aitsGobO606

An EnpkWo Studyot PlanBasd TcnclRpr
Reprusentutons of Pass and * ~ ~ ME

Fortran Code mleg

7. Au UOOWp . coNTrA~c an GRANT NUMOCR(.j

Scott P. Robertson N000144M6..07g
ChlufltChefl Yu

8. *OGOOMMG ANIZATIO06 MNG AUG &0OORESS 1e.ib4 "*2 1
Cognition and Compu*'g Laboratory A0269hprNUTsMOTSK

Psychology OepL.Rutgrs Unlv.-Busch Campus NR 4424203-01
New Brnswk* NJ 06903

II. epte ScNienceJN ProgrCm N1ESl LOE2. 06POR? OSFE9

Sciene PTOramSJune, 1967

Aligon, VA 22217 54_________

I&. UGN..,0mg 49AGENY NAUE A AOORESS1W(dilefrent front Coe.*Un* Office) I$.- saCuA"tY CLAM We os")a..

16. GOISTRUUFION STATUMIENT (of this Report)

Approvrd for public release; distribution unlimited.

17. OISTROBUTION STArtmaNT rat the abstract enterod t, Block 20. it different from Report)

I$. SUPPLZMENtA0Y 1(ors

is. 96V w10os O(CtMu.do ee. side it noeseeew a"d Idmetfy by block nmber.)

Software psychology, human computer interaction, program comprehension
plannig.

to. AGGTRAcy tCefnlr.mi on rovere" It"O of feceeey ad Identifyp by block 0110116)

The first step In program modification is comprehension. Several researchers
have argued recenitly that programmers utilize a plan-based representation when
composing or comprehending program code. In a series of studies we are testing
the psychologica valdity of this proposal and examining the nature of plan-based
program representations. Here we report the results of our first study in which
Programmers segmented code and sorted programs. The segmenting data showed

JAN~ 7147 0 ls PINV5 SOSL Unclassified
1ECUITY CLAMPSICAION OP TIwS VARS turn Dom Sn -

Uncassified
SoCumIwv CLASSIVICArION Or TriS PAG(*1. ODare Etemi)

toa programmers agree on the major components of a program and that these corn-
ponents are defined by goals in a plan representation. PascaI and Fortran programs
thaW employ the same pin structures were segmented into similar components.

These components wes labelled with similar subgoal descriptions. The majority
of subgoals described were abstract, with few being task-specifc. Program sorting
data also shows clustering into plan groups, however some secondary dimensions, like
the type of data used (in Pascal programs), may also be important parts of program
representation. -

Accd, 3ion For

S. ' iA.

AE

CU IT Oe

iIcurnTy CL.ASI~CA? I p'. (P vw* iU% mle

! 1

Introduction

How is computer program code conceptually represented,

and how do programmers utilize conceptual representations of

code in the task of program modification? In a series of

experiments, we have set out to explore these questions

using a variety of psychological methodologies. Here the

' first of these experiments is reported.

Several researchers have argued recently that

programmers utilize a plan-based representation when

composing or comprehending program code (Adelson, 1981;

Bonar & Soloway, 1985; Soloway, Bonar & Erlich, 1983;

Soloway & Erlich, 1984; Soloway, Ehrlich, Bonar & Greenspan,

1982; Ehrlich & Soloway, 1983; Rist, 1986). Soloway and his

colleagues are at the forefront of theory in this area.

They have developed a taxonomy of programming plans and plan

types. For example, Bonar & Soloway (1985) note that novice

programmers bring "step by step knowledge" about how to make

choices, iterate, and perform other sequential activities

from everyday life into the programming task. They must

then acquire "programming knowledge," which consists not

only of the syntax and semantics of a programming language,

but also the plans, or hierarchically organized sequences of

goals and actions that achieve specific tasks.

Some empirical studies of the claim that programmers

utilize plans have appeared. Rist (1986), for example, asked

novice and expert programmers to group lines of Pascal code

that "did the same things" together. Novice and expert

2

programmers grouped lines on several crtiterla including

.global plans" like initialize, input, calculate, and

output, "task-level" plans like sorting wallpaper costs for

a specific room or calculating the tax for a particular

item, and "syntaxz, like assignment statements or loop

control statements. Interestingly, novices grouped many more

lines based on syntax while experts grouped lines based on

function.

In this experiment, we explored the way In which expert

programmers chunk code by looking at several different

programs, including programs in different languages, that

utilize the same plans. Previous researchers have tended to

focus on plans in individual programs, assuming that the

abstract plans are transferable across programs. Also,

previous research has almost exclusively dealt with a single

language, usually Pascal. If we truly believe that plans

are abstract knowledge structures that programmers utilize

when they write or read code, then we should be able to

demonstrate their common properties across programs and

across languages.

Plans are knowledge structures that organize steps in a

procedure into chunks. Each chunk achives a subgoal in the

goal hierarchy of a particular task. Program plans organize

sections of code Into chunks. Task-level plans consist of

subgoals that are specified In the task language, to "get an

address from a buyer's list" for example. General plans, on

the other hand, consist of subgoals that are abstractions

3.

from a specific task, and may in fact apply in several

contexts, *Iterate in a loopo for example. Programs that

perform different tasks but use the same general plans

should be chunked the same way. To examine this claim, we

asked programmers to segment code from Pascal and Fortran

programs and to sort the programs into groups. Within each

language group, there were subgroups of programs that

utilized the same general plans. A major goal of our

Initial study was to demonstrate that plan subgroups are

recognizable to programmers by shoving that programs sharing

a plan would be sorted together and by showing that programs

sharing a plan would be segmented and described the same

way.

A programming language is usually designed to support

general plans. Thus, languages contain "loop constructs"

but do not contain "cmaepoelists' constructs. To the

extent that general program plans are abstract from

specific tasks, programs that are written in different

languages but that utilize the same plan should be

recognized as similar. A second goal of this study was to

show that Pascal and Fortran programs which used the same

plan would be segmented and labelled In the same way.

Method

Subjects. Fifteen Pascal programmers and fifteen Fortran

programmers were recruited from the student population at

Rutgers University. Most of the Pascal programmers were

4

graduate students in computer science while most of the

Fortran programmers were engineering graduate students.

Each subject was paid $8.00 per hour for participation, and

most subjects spent 1.5-2.5 hours in the experiment.

materials. Nine Fortran programs and nine Pascal programs

were written for use in this (and subsequent) experiments.

All of the programs are debugged, working code. The nine

programs in each language group achieved nine different

tasks, but they were written in accordance with the three

plans shown In Table 1. Within each language group, there

were three programs that utilized each of the three plans.

Pascal programs Past, Pas2, and Pas3 and Fortran

programs Fort, For2, and For3 were written in accordance

with the first plan in Table 1, the "MGOM" plan. The MGOM

plan consisted of five subgoals: I) declare data structures

2) display a MENU, 3) GET an input from the menu, 4) perform

the OPERATION selected by the Input, and 5) return to the

MENU state or quit. Programs Past and Fort were data

analysis programs, Programs Pas2 and For2 were computer

mail programs, and programs Pas3 and For3 emulated an

electronic calculator. The texts of these programs appear

in Appendix A.

Pascal programs Pas4, PasS, and Pas6 and Fortran

programs For4, For5, and For6 were all written in accordance

with the second plan in Table 1, the *RCP" plan. The RCP

plan consisted of four subgoals: 1) declare data structures,

5

2) READ lists from files, 3) COMPARE lists and get common

elements, and 4) PRINT the common elements. Programs Pas4

and For4 found common courses in transcripts and printed

these as transfer courses, programs Pass and For5 compared

two schedules and printed possible meeting times, and

programs Pas6 and For6 compared two mailing lists and

printed common customers. The texts of these programs

appear in Appendix B.

Pascal programs Pas7, Pas8, and Pas9 and Fortran

programs For7, For8, and For9 were written in accordance

with the thirl plan in Table 1, the "RTRDP" plan. The RTRDP

plan consisted of five subgoals: 1) declare data structures,

2) READ and TEST an initial input, 3) display further

Information and READ new Inputs, 4) DO a transaction or

calculation, and 5) PRINT the results. Programs Pas7 and

For7 emulated a bank teller machine, programs Pas8 and For8

presented a stimulus and collected a reaction time as if for

a psychology experiment, and programs Pas9 and For9

controlled a computer login sequence.

Procedure. Subjects were run Individually or in small

groups. Each subject received a packet containing

instructions and the nine programs in either Pascal or

Fortran. Subjects were first instructed to draw lines

between statements in the code in order to "Identify the

parts" of the program and to divide each program into

several major sections." Each time a subject drew a segment

Table 1: Components of the three programming plans.

Plan 1: *MGOM°

a. declare data structures.

b. display a MENU.

c. GET an input from the menu.

d. perform the selected OPERATION.

e. return to the MENU state or quit.

Instantlatjons of plan I

Data analysis (Forl, Pasi).

Computer mail (For2, Pas2).

Electronic calculator (For3, Pas3).

Plan 2: *RCP"

a. declare data structures.

b. READ lists from files.

c. COMPARE lists and get common elements.

d. PRINT the common elements.

Instantiations of plan 2

Course transfer (For4, Pas4).

Schedules (For5, Pas5).

Mailing lists (For6, Pas6).

Table I. (cont.)

Plan 3: "RTRDPO

a. declare data structures.

b. READ and TEST an initial input.

c. display further information and READ new input.

d. DO a transaction or calculation.

e. PRINT the results.

Instantlations of olan 3

Computer login sequence (For7, Pas7).

Stimulus-response psychology experiment (For8, Pas8).

Bank teller (Forg, Pas9).

l ine It was numbered in order. After segmenting the major

sections of a program the subjects were instructed to write

a descriptive label for each major section 'in terms of the

program's task.* For each program, after segmenting and

labelling the major sections, the subjects were instructed

to draw segment lines within the major sections to identify

subsections. Finally, subjects were asked to sort the

programs Into groups. The subjects were told that programs

belonged In a group If they 'work the same way.' Subjects

were allowed to form as many groups as they wished but they

could not leave a single program In a group by itself nor

could they put all of the programs together into a single

group.

Results

Subject Progranning Experience. Subjects in both the Pascal

and Fortran groups had an average of 3.6 years of

programming experience. However, subjects In the Pascal

group reported having worked with more programming languages

(a mean of 5.8 languages) than subjects In the Fortran group

(a mean of 2.8 languages), t(27)=4.59, p(.001.

Segmenting. Each subject drew line segments in the code of

nine programs. We predicted that line segments would be

drawn at plan boundaries. For each program, we calculated

the frequency of line segments drawn after each line. If

60%i or more of the subjects segmented a program at a

Table 2. Frequencies of segmenting by 60% or more of the

subjects at predicted and not predicted positions in

the Pascal programs.

Segmenting Segmenting

predicted not predicted

Not Not

Observed Observed Observed Observed

Past 4 0 0 53

Pas2 4 0 0 46

Pas3 3 1 0 48

Pas4 3 1 0 46

Pas5 3 1 0 76

Pas6 2 2 0 31

Pas7 3 1 0 44

Pas8 4 0 0 43

Pas9 3 1 0 71

Pascal

Totals 29 7 0 458

Table 3. Frequencies of segmenting by 60% or more of the

subjects at predicted and not predicted positions In

the Fortran programs.

Segmenting Segmenting

predicted not predicted

Not Not

ObsevedObserved Observed Osre

Forl 3 1 0 46

For2 3 1 0 33

For3 3 1 0 45

For4 4 0 0 53

For5 4 0 2 51

Fon6 4 0 0 45

For7 3 1 0 46

For8 4 0 0 32

For9 3 1 1 52

---- --

Fortran

Totals 31 5 3, 403

9

.:Particular line, we considered that line an important chunk

boundary. Important chunk boundaries should correspond to

the predicted plan boundaries.

Tables 2 and 3 show the frequencies of important chunk

boundaries (those that were segmented by 60% or more of the

subjects) at predicted and not-predicted locations for the

nine Pascal programs and the nine Fortran programs

respectively. Chi-squares on the frequencies for all

programs were significant, ranging from z2(1)=24, p<.05 for

Pas6 to z2(1)=78, p(.001 for Pas5. Twenty-nine out of 36

(81%) of the plan boundaries In the Pascal programs were

segmented according to our criterion. Thirty-one out of 36

(86%) of the plan boundaries in the Fortran programs were

segmented according to our criterion. None of the 458 non-

boundary lines were segmented In the Pascal programs, and

only 3 out of 406 M(%) non-boundary lines were segmented in

the Fortran programs.

Modal Labels of Program Segments. After segmenting the

programs, the subjects labelled each section with a

description of Its function. We were concerned with whether

these descriptions corresponded with the subgoals that we

claim control each chunk. Tables 4,5, and 6 show the modal

descriptive labels that subjects gave to each chunk of each

program in the MGOH, RCP, and RTRDP plan groups

respectively. Included In this list are labels that were

given to major chunks, those which. were Identified by a

Table 4. Modal descriptive labels for plan components in

Pascal and Fortran programs using the MGOM plan.

Data analysls

Pasi Forl

Declare. Declare.

Print instruction. Display menu.

Get number. Read key.

Compute means. Calculate mean and

update result.

Comguter Mail

Pas2 For2

Declare variable. Declare.

Print instruction. Print our menu.

Process message. Get input and

print message.

Quit. Check if end.

Electronic Calculator

Pas3 For3

Declare. Declare.

Print Menu. Print out menu.

Read In value and ---

allow choice.

Do calculation. Calculate.

--- Continue or end.

Table 5. Nodal descriptive labels for plan components in

Pascal and Fortran programs using the RCP plan.

Course transfer

Pas4 For4

Declare. Define variables.

Read file. Read data file.

If same then transfer. Compare data.

Output results. Print results.

Schedules

Pas5 For5

Declare. Declare.

Read file. Read files.

Compare lists. Compare.

Print result. Print out.

Mailing Lists

Pas6 For6

Declare. Declare.

Read data. Read data file.

Compare lists. Compare data.

Print result. Print out.

Table 6. Modal descriptive labels for plan components in

Pascal and Fortran programs using the RTRDP plan.

Bank teller machine

Pas7 For7

Declare. Declare.

Check password. Read data.

Display options. Print menu.

Print account. Decrement account and

print result.

Psycholocy experiment

Pas8 For8

Declare. Declare.

Initialize variable. Give instruction.

Print out message and Get response and

receive response. update count.

Calculate percentage Output result.

and print result.

Comouter login seauence

Pas9 For9

Declare. Declare.

Print account. Check input.

Do transaction. Choose.

Print result. Print result.

13

segment line drawn by 60% or more of the subjects. Each

label listed Is the most frequent of the set of labels given

to that chunk (the experimenters judged paraphrases and

close matches In wording to be the same label).

In glancing over these lists, note that descriptions of

the Pascal and Fortran programs which did exactly the same

thing (e.g. Past and Fort, Pas2 and For2, Pas3 and For3,

etc.) sound very similar. Also, the six programs within a

plan group also sound similar.

Almost all of the labels are abstract, describing

general computational functions such as "declare variables,'

"read data file," "display menu,* "calculate," and 'print

results." Only a few labels are task specific, namely

'compute means" and "calculate means' In Past and Fort

respectively, "if same then transfer" In Pas4, 'check

password' in 'Pas7, "decrement account" in For7, "calculate

percentage" in Pas8, and "print account" in Pas9.

Descriptions of the plan chunks. Table 7 shows the major

chunks of each plan and Indicates whether or not 60% or more

of the subjects provided an appropriate descriptive label

for each chunk in each of the six programs. Subjects

provided appropriate descriptions for all of the chunks In

all of the Instances of the RCP plan. This was the most

successful set of programs in terms of matching label data

to a plan.

Table 7. Production of appropriate decriptions for plan

components. "Yeso indicates that 60% or more of the

subjects provided an appropriate description.

MGOM Plan Pasl Pas2 Pas3 Forl For2 For3

Declare data structure. yes yes yes yes yes yes

Display menu/instruct. yes yes yes yes yes yes

Get/read input. yes no yes yes yes yes

Calculate/compute. yes yes yes yes no no

Quit.i no yes no no yes yes

RCP Plan Pas4 Pas5 Pas6 For4 For5 For6

Declare data structure. yes yes yes yes yes yes

Read files. yes yes yes yes yes yes

Compare lists. yes yes yes yes yes yes

Print results. yes yes yes yes yes yes

RTRDP Plan Pas7 Pas8 Pas9 For7 For8 For9

Declare data structure. yes yes yes yes yes yes

Test/initialize inputs, yes yes no yes no yes

Display instr./read inp. yes yes yes yes yes no

Do transaction, no yes2 yes yes2 yes yes

Print results. yes yes2 yes yes2 yes yes

l'Quit" was an unexpected label, see text for a discussion.

2These components were described together in one label.

15

For the KGOM plan, a majority of the subjects provided

descriptions for the first two chunks, 'Declare data

structure* and "Display Menu/Instructions," in each

program. Fewer than our 60% criterion provided a label for

the "Get/Read Input" chunk in Pas2, but this chunk was

included in descriptions of all the other programs. The

final chunk, "Calculate/Compute", was included in

descriptions of all the Pascal programs and Forl, but not

For2 and For3. Apparently many subjects felt that getting

input and performing a computation were part of the same

chunk in these latter two programs. Finally, subjects

included an unexpected chunk, which they labelled "Quit," in

Pas2, For2 and For3. This chunk is branched to when the

"Quit" option is chosen in the "Get Input* part of the

program.

For the RTRDP plan, descriptions were provided by a

majority of subjects for all of the plan chunks in Pas8 and

For7. In Pas9 and For8 the second chunk, "Test/Initialize

Inputs" did not meet the 60% criterion and in those cases

the chunk was included as part of the "Display

Instructions/Read Input" subgoal. In For9, the "Display

Instructions/Read Input" and "Test/Initialize Inputs" chunks

were also combined, but described as "Check/Initialize

Inputs." Finally, "Do Transaction" and "Print Results" were

described as separate chunks in Pas9, For8 and For9, but

were described togther in Pas8 and For7. "Do Transaction"

did not meet the 60% criterion in Pas7.

Table 8. Stress values for 1-3 dimensional solutions to

multidimensional scaling of Pascal and Fortran program

sorting data.

Proaramming Language

Dlmenslonality Pascal Fortran

One .196 .124

Two .002 .000

Three .000 .000

17

Program Sorting. After segmenting and labelling, the

programmers were asked to sort the programs into groups

according to *the way they work.' They were Instructed to

sort the programs into as many groups as they wished with

the Constraints that no program could be left by itself and

all the programs must not be sorted together into a single

group.

Multi-dimensional scaling (MDS) was used to determine

If the Pascal and Fortran programs were sorted into three

distinct plan groups. For each language group, the input to

the MDS algorithm was a matrix of the frequencies with which

each program was sorted with each of the other programs.

Use of the frequency data is based on the assumption that

programs which are more similar will be sorted together more

frequently. Separate MDS analyses were performed on the

Pascal and the Fortran data. The strongest prediction is

that a one-dimensional solution will fit both data sets well

and that the plot of the stimulus coordinates will show

three clusters based on the plan groups.

Table 8 shows the Ostress* values for one, two, and

three-dimensional MDS solutions for both the Pascal and the

Fortran data. Lower stress values Indicate a good fit to

the data, and values below .15 are considered to be good

fits (Kruskal & Wish, 1978). On these criteria, the one

dimensional solution fits the Fortran data very well and the

Pascal data fairly well. A two dimensional solution

PASi PAS2 PAS3 PAS8 PAS7 PAS9 PAS4 PAS5 PAS6

(A) I I I
-2 -1 0 1 2

DIMENSION 1 (PLAN)

FOR5 FOR6 FOR4 FOR8 FOR7 FOR9 FOR2 FOR1 FOR3

(B) I I I I
-2 -1 0 1 2

DIMENSION 1 (PLAN)

FigUre 1. Plots of the stimulus coordinates for one-
dimensional solutions to I(4DS of Pascal (A)
and Fortran (B) program sorting data.

19

completely explains the distributions of data for both the

Fortran programs (although Kruskal & Wish, 1978 suggest that

a one-dimensional solution with stress below .15 is

adequate) and the Pascal programs.

Figure I presents one-dimensional plots of the stimulus

coordinates for Pascal (Figure 1A) and Fortran (Figure IB)

program sorts. Note that three clusters are present in both

plots. One cluster contains a tight distribution of Past,

Pas2, and Pas3 in Figure IA and For, For2, and For3 in

Figure IB, all members of the MGOM plan group. Another

cluster contains a tight distribution of Pas4, Pas5, and

Pas6 in Figure IA and For4, ForS, and For6 in Figure IB, all

members if the RCP plan group. A third cluster contains

Pas7 and Pas9 In Figure IA and For7, For8, and For9 in

Figure IB, all members of the RTRDP plan group. Note that

Pas8, which should be in the RTRDP plan group, is near the

members of the MGOM group. This program was the "psychology

experiment" program which presents stimuli, collects

reaction times, and writes means to a file. Many subjects

commented that they did not really understand this program.

Several subject said that they sorted Lt with the MGOM

programs because they perform numerical calculations. Past

and Fort, In fact, calculate means and therefore share a

task with Pas8 and For8. When subjects did not understand

the structure of the program, they sorted on this common

task feature.

DnIMSION 2 2

PS2 PASI PAS3 PAS4 PASS PAS6

PASS P1A87 PAS9

No
password

checking06

00

-1

Password

checking

-2I I I
-2 -1 0 1 2

DMINSION 1 (PLAN)

Figure 2. Plots of the stimulus coordinates for two-

dimensional solutions to MDS of Pascal

program sorting data.

DIMdESION 2 2
YOR5 FORE FOR4

FoRS rOR7 rOR9

No 1 roR2 tORt FOR3

password

checking

0

Password

checking

-2 I
-2 -1 0 1 2

DIMENSION 1 (PLAN)

Figure 3. Plots of the stimulus coordinations for two-
dimensional solutions to MDS of Fortran
program sorting data.

22

Figures 2 and 3 present the two-dimensional plots of

the stimulus coordinates for Pascal and Fortran program

sorts respectively. We have circled the original plan

groups In these two figures, and drawn a line to separate

Pas7 and Pas9 from the other programs in Figure 2 and For7

and For9 from the other programs In Figure 3. Addition of

the second dimension seems to draw these two programs away

from the rest in both language groups. In looking at the

descriptions that subjects gave and the contents of the

programs themselves, we conclude that these programs (one is

the bank teller program and the other Is the login program)

are distinctive since they both contain requests for

passwords and require a test of the passwords before

cont inu ing.

Finally, hierarchical clustering (Johnson, 1967) is

often used with sorting data to show group structure. Figure

4 shows hierarchical clustering of the sorting data for the

Pascal (Figure 4a) and Fortran (Figure 4b) programs. Highly

dissimilar items, indicated by infrequent sorts into the

same group, cause branching high In the tree structures.

More similar items cause branching lower in the trees.

For the Pascal programs (Figure 4a), the highest

braching creates two groups. One group contains Pas4, Pas5,

and Pas6 while the remaining programs are in the second

group. Pas4, Pas5, and Pas6 are all members of the RCP plan

group, programs which handle non-numerical Information. The

remaining programs all handle numerical information. Thus,

PAS9
PAS7

PASS
PAS3
PASi
PAS2

PAS6
PASS

PAS4

()-20.00 DISSIMILARITIES 0.00

FOR9--

FOR7 _____

FOR8

FOR3

FORI

FOR2

FOR6

FORS

FOR4

(B) -20.00 DISSIMILARITIES 0.00

Figjure 4. Hierarchical clustering of Pascal (A) and Fortran (B)

program sorting data.

~24

an important dimension for the Pascal code may be the type

of data that is handled. Among the Pascal programs that

handle numerical data, two more clusters emerge high in the

tree. One cluster contains Pas7 and Pas9, both members of

the RTRDP plan group and the two programs which check

passwords. In the other cluster are Past, Pas2, and Pas3,

all members of the MGOM plan group, and the deviant program,

Pas8. The three clusters (Pas4-Pas5-Pas6, Pas5-Pas9, and

Pasl-Pas2-Pas3-Pas8) do not begin to break up until much

lower in the tree, suggesting that they fcrm three Important

clusters which (with the exception of Pas8) correspond to

the three plan groups examined in this experiment.

For the Fortran programs (Figure 4b), a similar, but

not exactly equivalent picture emerges from hierarchical

clustering. At the highest branching level, For7 and For9,

the password programs in the RTRDP plan group, form a

cluster distinct from the other programs. At the second

branching level, which is still very high, For4, For5, and

For6, the non-numerical RCP programs, form a cluster

distinct from Fort, For2, and For3, all members of the MGOM

plan group, and the deviant For8. At this point, the

hierarchical structure of the Pascal and Fortran programs

looks very similar. Unlike Pas8 in the Pascal programs,

For8 breaks away from the Forl-For2-For3 cluster at a high

level. This leaves three plan clusters in the Fortran data

(For4-For5-For6, For7-For9, and Forl-For2-For3) that remain

together until low in the tree and that correspond to the

25

three plan groups examined in this experiment. For8 is not

cleanly In any cluster.

Discussion

In this experiment subjects segmented and labelled

sections of several programs and then sorted the programs

into groups. The positions of segmenting lines in the

programs was consistent with the predicted positions of plan

chunks for both Pascal and Fortran programs written In

accordance with three plans. The labels that subjects gave

to these chunks were similar within plan groups, even across

Pascal and Fortran language groups. A majority of subjects

(60% or more) provided labels that reflected the mejor

subgoals that plan components achieved for most of the plan

chunks in the programs. Examination of the modal labels for

plan chunks shows both abstract descriptions (e.g. "print

results") and more task specific descriptions (e.g. "compute

means"), however the bulk of the descriptions are abstract.

In those cases where a majority of subjects did not provide

a chunk label, we must assume that they perceived two

subgoals as being combined. This occu-ed most often when

the subgoals were "Calculate" and "Print." In some cases

where programs either performed a calculation and returned

to a menu or quit, subjects described the "Quit" subgoal as

separate from the "Calculate" subgoal.

Sorting data for both the Pascal and Fortran programs

shows that they cluster into plan groups. This suggests

26

that subjects perceive the abstract plan structure common to

all of the programs within a plan cluster and use it a basis

for classifying the programs. A secondary classification

criterion is based on common features. In one case, when

the structure of a program was not clear to subjects, they

based their sorting judgement on the fact that other

programs calculated means. When a second dimension Is

examined, subjects appeared to be sorting on a task-specific

feature, namely whether or not a program had password

checking. For Pascal programs, the data type was an

Important feature for distinguishing programs.

We conclude from this data that programmers consider

both general plan Information that Is common to many tasks

and task-specific program constructs when comprehending

code. The similarity of labels for both Pascal and Fortran

data suggests that some general programming plans are common

across languages. In future studies, we expect to examine

this issue more carefully. Pilot data on sorting of

descriptions of these Pascal and Fortran programs suggests

that language Information Is not present In the abstract

representations that are used to label the programs.

Finally, we should note that although the data,

especially the sorting data, provides good evidence for

abstract plan structures, we were not able to generate

perfect stimuli. One of the programs was unexpectedly

sorted Into a different plan group, apparently on the basis

of non-plan related criteria. This suggests a practical

27

recommendaton that all complex stimuli to be used in studies

of programmers and their tasks should be empirically

validated on the constructs that the experimenters feel are

important. The deviant program also brings up a theoretical

question. How are different types of knowledge, like

general plan knowledge, task-specific knowledge, and

knowledge of language constructs related and used together

to reason about code? In future studies (using these

materials, by the way) we will examine some of these

quest ions.

28

Acknowledgements

Our thanks to Dr. John O'Hare as the principal advocate

and critic of this research program and to the Office of

Naval Research for their generous support. We are also

grateful to David Koizumi for his assistance in the MDS and

clustering analyses.

29

References

Adelson, B. (1981). Problem solving and the development of

abstract categories in programming languages. Memory and

Cognition, 9, 422-433.

Bonar, J., & Soloway, E. (1985). Preprogramming knowledge: A

major source of misconceptions in novice programmers.

Human-Computer Interaction, 1, 133-161.

Ehrlich, K., & Soloway, E. (1984). An empirical

investigation of tacit plan knowledge in programming. In

J.C. Thomas & M.L. Schneider (Eds.), Human factors in

computer systems. Norwood, NJ: Ablex Publishing

Corporation.

Johnson, S.C. (1967). Hierarchical clustering schemes.

Psychometrika, 32, 241-254.

Kruskal, J.B., & Wish, M. (1978). Multidimensional scaling.

Beverly Hills, CA: Sage Publications Inc.

Rist, R.S. (1986). Plans in programming: Definition,

demonstration and development. In E. Soloway & S. Iyengar

(Eds.), Empirical Studies of Programmers. Norwood, NJ:

Ablex Publishing Corporation.

30

Soloway, E., & Ehrlich, K. (1984). Empirical studies of

programming knowledge, IEEE Transactions on Software

Engineering, 5,, 595-609.

Soloway, E., Ehrlich, K., Bonar, J., & Greenspan, J. (1982).

What do novices know about programming? In A. Badre & B.

Schneiderman (Eds.), Directions In human-computer

Interaction. Norwood, NJ: Ablex Publishing Corporation..

Appendix A. Texts of Pascal and Fortran programs
that belong to the "MGOM" plan group (6 pages).

PROGRAM Pasi(inputoutput);(10/03/'86 I
CONST

No = 5;.
VAR

I,J,T,Intrvl,Temp,ERR,NoKey,Num : integer;
Result : array [l..No] of real;
Key : string [4];

BEGIN
for I := I to 6 do writeln;
writeln (I ********** MANUAL **********');
writeln;writeln;
writeln (' NUM LOCK : press it before using');
writeln (' B or b : press it to begin processing');
writeln (' BACKSPACE : press it to backspace');
writeln (' ENTER : press it after keying');
writeln (' : press it for mean of single');
writeln (' group');
writeln (' E or e : press it to end one task');
writeln (' C or c : press it to clear screen');
writeln (' and continue');
writeln (' Q or q : press it to quit');
read (Key);
if (Key = 'B') or (Key = 'b') then
beg in

writeln;writeln;writeln;
write(' • How many groups do you want to analyze ? ');
read(Num)

end;
Key:='cl;
repeat

J:=O;
if (Key = 'C') or (Key = 'c') then clrscr;
for I:=1 to 6 do writeln;
for I:= I to Num do Result[I]:=O;
repeat

I:=O;
J:=J+I;
Temp:=J;
repeat

read(Key);
write(' ');
Il:=I+i;
T:=I;

val(Key,NoKey,ERR);
Result[J]:=Result[JI+NoKey;

until (Key = '=') or (Key = 'E') or (Key ='e');
If (Key () 'E') and (Key 0> 'e') then
begin
Result[J]:=Result[J]/(T-I);
writeln('==) MEAN : ',Result[J],- (,Jf)1)

end
until (Key = 'E') or (Key = 'e');

writeln;writeln;writeln;
writeln('*** Q or q for QUIT, C or c for Starting again ***');
read(Key)
until (Key = 'Q') or (Key = 'q')

END.

C*** PROGRAM FORTRANI (11/12/'86}
INTEGER I,J,T,TEMP,NUM,NOKEY
REAL RESULT
CHARACTER*4 KEY
DIMENSION RESULT(5)
WRITE(*,10)

to FORMAT(//////)
WRITE(*,*)'*** MANUL ***'
WRITE(*,*)'NUM LOCK : PRESS IT BEFORE USING'

WRITE(*,*)'[B] : TO BEGIN'
WRITE(*,*)'BACKSPACE : BACKSPACE'
WRITE(*,*)'ENTER : PRESS IT AFTER KEYING'
WRITE(*,*)'[=] : TO GET ONE MEAN'
WRITE(*,*)'[E] : END ONE TASK AND START'

WRITE(*,*)' AGAIN'

WRITE(*,*)'[Q] : QUIT'
READ(*,20) KEY

20 FORMAT(A)
50 IF (KEY.EQ.'B') THEN

WRITE(*,*)'* HOW MANY GROUPS YOU WANT ANALYSE ?'

READ(*,*) NUM
ENDIF
IF (KEY.NE.'Q') THEN
DO 150 I=t,NUM
RESULT(I)=O

150 CONTINUE
J=O
IF (KEY.NE.'E') THEN

200 1=0
J=J+1

300 READ(*,20) KEY
IF((KEY.NE.'=').AND.(KEY.NE.'E').AND.(KEY.NE.'Q')) THEN
NOKEY=ICHAR(KEY)-48
I=I+1
RESULT(J)=RESULT(J)+NOKEY
GOTO 300
ELSEIF (KEY.EQ.'=') THEN
RESULT(J)=RESULT(J)/I
WRITE(*,*)'==) MEAN '
WRITE(*,*) RESULT(J)
GOTO 200
ELSEIF (KEY.EQ.'E') THEN
KEY='B'
GOTO 50
ENDIF

ENDIF
ENDIF
STOP
END

PROGRAM Pas2(lnput,output);(iO/13/'86)
VAR

I : integer;
KeyStr string [40];
KeyPath string [15];
Key :char;

BEGIN
for II to 6 do writein;
writeln (I ***** MANUAL*****')
wrjteln;writeln;
writein (' tMlail :to enter massage');
writein (I (ENTER] press it after completing');
writein (' [BACKSPACE] :press It to backspace');
writein (' (Elrase :to erase massage');
writein (' (F~rom :from whom');
writein (' (Tbo to whom');
vritein (' INlext :done and for next message');
writein (' (Obuit : done and quit');
readCKey);
clrscr;
while Key in ('M','m','E','e'] do
begin

for I:=1 to 10 do writein;
write ('I)
read(Key);
write(':
readln(KeyStr) ;writeln;
write('*')
read(Key);
if not (Key in C'E','e']) then
beg in

write('
readln(KeyPath);
write('*')
read(CKey)
write(':
readln(KeyPath);
write('*)
read(Key);

end;
if (Key in E'N','n'1) and (not (Key in ('e','E'D) then
begin

Key:- i';

clrscr;
end

end;
if Key in ('Q','q'] then
beg in

writeln;writeln;
writeln(' ---- All JOBS DONE, BYE ----- 1

end
END.

O*'* PROGRAM FORTRAN2 (11/5/'86)
INTEGER I
CHARACTER KEY
CHARACTER*15 KEYSTR,KEYPATH
J-0
WRITE(*,10)

10 FORMAT(//////)
WRITE(*,*)' ***** MANUL ****'
WRITE(*,20)

20 FORMAT(//)
WRITE(*,*)' [M]AIL : ENTER MASSAGE'
WRITE(*,*)' CENTER] : END OF MASSAGE'
WRITE(*,*)' [BACKSPACE] : BACKSPACE'
WRITE(*,*)' [EIRASE : ERASE MASSAGE'
WRITE(*,*)' [FIROM : FROM WHOM'
WRITE(*,*)" (TIO : TO WHOM'
WRITE(*,*)' [N]EXT : DONE, FOR NEXT'
WRITE(*,*)' [QIUIT : DONE AND QUIT'
READ(*,30) KEY

30 FORMAT(A)
100 IF ((KEY .EQ. 'M') .OR. (KEY .EQ. 'E')) THEN

WRITE(*,*)' *'
READ(*,30) KEYSTR

110 READ(*,30) KEY
IF (KEY .EQ. 'E') GOTO 100
IF (KEY .NE. 'F') THEN
GOTO 110

ELSE
WRITE(*,*)' FROM
READ(*,30) KEYPATH

ENDIF
120 READ(*,30) KEY

IF (KEY .EQ. 'E') GOTO 100
IF (KEY .NE. 'T') THEN
GOTO 120

ELSE
WRITE(*,*)' TO :'
READ(*,30) KEYPATH
ENDIF

ENDIF
READ(*,30) KEY
IF (KEY .EQ. 'N') THEN
KEY='M'
GOTO 100
ELSEIF (KEY .EQ. 'Q') THEN
WRITE(*,*)'!! JOBS DONE, BYE !'

ENDIF
STOP
END

PROGRAM Pas3(input,output);(09/26/'86)
VAR

I : integer;
NoKey,Result : real;
Key : char;

BEGIN
for I := I to 6 do writeln;
writeln (' ********** MANUAL **********');
writeln;writeln;
writeln (' NUM LOCK : press It before using');
writeln (I B or b : press It to begin computing');
writeln (' ENTER : press it after keying');
writeln (' C or c : press It to clear screen');
writeln (' and continue');
writeln (' Q or q : press It to quit');
read (Key);
if (Key = 'B') or (Key = 'b') then Key := 'c';
repeat

if (Key = 'C') or (Key = 'c') then clrscr;
Result:=O;
Key:='+';
repeat

read(NoKey);
case Key of

'+1 : Result:=Result+NoKey;
Result:=Result-NoKey;
Result:=Result*Nokey;

'/' : Result:=Result/NoKey
end;
read(Key)

until Key = P=';
writeln(Result);
read(Key)

until (Key = q') or (Key 'Q')
END.

C*** PROGRAM FORTRAN3(10/27/'86)

INTEGER INUM
REAL NOKEY,RESULT
CHARACTER KEY
MUM-10
WRITE(*, 10)

10 FORMAT(//////)
WRITE(*,*)' ***MANUAL**'

WRITEC *, 20)
20 FORMAT(//)

WRITE(*,*)' NUM LOCK :PRESS IT BEFORE USING'
WRITE(*,*)' (B I :TO BEGIN COMPUTING'
WRITE(*,*), ENTER :END OF SINGLE DATA'
WRITE(*,*)' (C I :GO ON NEXT TASK'
WRITE(*,*)' I Q I1 QUIT'
READ(*, 100) KEY

100 FORMAT(A)
200 IF ((KEY .EQ. 'B') .OR. (KEY .EQ. 'C')) THEN

WRITE(*,*)'NERE WE BEGIN'
RESULT=O
KEY='+'

300 READ(*,*) NOKEY
IF (KEY .EQ. 1+') THEN
RESULT=RESULT+NOKEY

ELSEIF (KEY .EQ. '-') THEN
RESULT=RESULT-NOKEY

ELSEIF (KEY .EQ. '*') THEN
RESULT= RESULT *NOKEY

ELSEIF (KEY .EQ. '/') THEN
RESULT=RESULT /NOKEY

ENDIF
READ(*,100) KEY
IF (KEY .EQ. '=') THEN
GOTO 600

ELSE
GOTO 300

ENDIF
500 CONTINUE

ENDIF
600 WRITE(*,610) RESULT
610 FORMAT(F1O.3)
650 READ(*,100) KEY

IF ((KEY .NE. 'C') .AND. (KEY .NE. 'Q')) GOTO 650
IF (KEY .EQ. 'C') THEN
GOTO 200
ELSE
WRITE(*,*)' ***THANK**'

ENDIF
STOP
END

ql

Appendix B. Texts of Pascal and Fortran programs
that belong to the "RCP" plan group (6 pages).

PROGRAM Pas4;(10/08/'861
TYPE

Word=string (151;
Coursetype = record

Course : Word;
Crts : Integer

end;
CONST

N 1=2;
N2=3;

VAR
I,J,K,Ctr :Integer;
SUNY,Transf :array(i. .NII of CourseType;
MIT : arrayll..N2] of CourseType;
Datal ,Data2:text;

BEGIN
Ctr: =0;
assignCDatal, 'datal .3');
reset(Data 1);
'for I:=i to NI do readln(Datal,StJNYLI].Course,SUNYfI.Crts);
close (DataI) ;
ass ign(Data2, 'data2. 3');
reset(Data2);
for J:=1 to N2 do readln(Data2,MIT(J1.Course,MIT(J].Crts);
close(Data2);
for I:=1 to Ni do
begin

for J:=1 to N2 do
begin

if (SUNYCI].Crts)=MIT(JI.Crts) and (SUNY(I].Course=MITEJ2.Course) then
beg in

Ctr:=Ctr+1;
with Transf[Ctr]
do begin

Course: =SUNY (II.Course;
Crts:=MIT(I] .Crts

end
enrd

end
end;
for I:=i to 8 do writein;
writeln(' ** COURSES CAN BE TRANSFERED ***)
wr itel n; yr itel ri
for I:=i to Ctr
do begin

with TransfEII do
writeln(' * ,1:3,' ',Course:15,Crts:5)

end;
writeln;writeln(' **--------------- END------------- *****').

END.

C*** PROGRAM FORTRAN4 (11/6/'861
INTEGER I,J,K,C,CRTI,CRT2,CRT
CHARACTER* 15 SUNY?,MIT, TRANSF
DIMENSION CRT1(5),CRT2(5),CRT(5)
DIMENSION SUNY(5),MIT(5),TRANSF(5)
C-0
OPEN(20,FILE='DATA1 .3')
OPEN(21,FILE='DATA2.3')

10 FORI4AT(A)
20 FORMAT(I2)

DO 100 I=1.5
READ(20,1O) SUNYCI
READ(20,20) CRT1(I)

100 CONTINUE
DO 200 J=1,5
READC21,10) MIT(J)
READ(21,20) CRT2(J)

200 CONTINUE
DO 400 I=1,5
DO 400 J=1,5
IF (StNY(I).NE.MIT(J)) GOT0400
IF (CRTl(I).LT.CRT2(J)) GOTO 400
C=C+1
CRT(C)=CRT2(J)
TRANSF(C)=MIT(I)

400 CONTINUE
WRITE(*, 410)

410 FORMAT(//////)
WRITE(*,*)'**** COURSES CAN BE TRANSFERED**'
WRITE(*,*)' COURSE CREDITS'
DO 500 I=1,C
WRITE(*,420) TRANSF(I),CRT(I)

420 FORMAT(A,' ',12)
500 CONTINUE

WRITE(*,*)'************** END********'
STOP
END

"ROGRAM Pas5;(10/01/'86 1
"'YPE

WeekDay =(Mon,Tue,Wen,Thu,Fri);

Schedule-= record
Morning : char;
Noon :char;
Afternoon : char

end;
/AR

I,OrdDay :Integer;
Lori,Bruce,CoaTime :array (Mon. .FriJ of Schedule;
Day :WeekDay;
Datai,Data2 : text;

3EG IN
ass ign(Data 1, datal')
reset(CData1) ;
for Day:=Mon to Fri do
with Lori[Day] do readln(Datai,MorningNoon,Afternoon);

close(CData1) ;
ass ign(Data2, 'data2');
reset(Data2);
for Day:=Mon to Fri do
with BruceEDay] do readln(Data2,Morning,Noon,Afternoon);

close(Data2);
for Day:=Mon to Fri
do begin

with Lori[Day] do
begin

If (Morning = Bruce(Day].Mornlng) and (Morning =*1

then ComTime[Dayk.Morning:='*'
else ComTime(Dayl .Morrning:='-';
If (Noon = Bruce(Day].Noon) and (Noon
then ComTime(Day].Noon:='*'
else ComT Ime (Day] .Noon: =' -';

If (Afternoon = BrucetDay].Afternoon) and (Afternoon=
then ComTime1Day].Afternoon:='*'
else ComTlme(DayJ.Afternoon:=1-'

end
end;

for I:=l to 8 do writeln;
writeln(' ***THE COMMON SCHEDULE***'
wr itel n; yr ite n;
writeln(' Morning Noon Afternoon');
for Day:=Mon to Fri do
begin

DrdDay:=ord(Day)+i;
write(' *',OrdDay,' 9);

with ComTime(Day] do writeln(Morning:6,Noon:12,Afternoon:13)
end

END.

C*** PROGRAM FORTRAN5 (31/10/'86)

INTEGER I,J.ORDAY,DAY
CHARACTER LORI ,BRUCE,COMTIME
DIMENSION LORI(5,3),BRUCE(5, 3),COMTIME(5,3)
OPEN(20,FILE='DATAl')
OPEN(21 ,FILE='DATA2')

10 FORMAT(A)
DO 100 I=1,5
DO 100 J=1,3
READ(20,10) LORI(I,J)
READ(21,1O) BRUCE(I,J)

100 CONTINUE
DO 200 I=1,5
DO 200 J=1,3
IF((LORI(I,J).EQ.BRUCE(I,J)).AND.(LORI(I,J).EQ.'*'))TKEN
CONTIHEC I,J)='*'

ELSE
COMTIME(I,J)='-'

ENDIF
200 CONTINUE

WRITE(*, 300)
300 FORMAT(//////)

DO 500 I=1,5
WRITE(*,*) I
WRITE(*,*) COMTIME(I, I),COMTIHE(I,2),COMTIME(I,3)

500 CONTINUE
STOP
END

PROGRAM Pas6;(09/24/'861
TYPE

Word=string [15];
Psnfl1=record

Name :Word;
Tele :Word

end;
C ON ST

N1=2;
N2=3;

VAR
I,J,K,Ctr: integer;
JJ,CoList:arrayli. .NI] of Psnfl;
ATT:arrayll..N2] of Psnfl;
Datal ,Data2:text;

BEGIN
,Ctr: =0;
ass ign(Datai, 'datal');
reset(Data I);
-for I:=1 to Ni do readln(Datal,JJ(I].Name,JJ(I].Tele);
close (Data1) ;
assign(Data2, 'data2');
reset(Data2);
for J:=i to N2 do readln(Data2,ATTtJJ.Name,ATT[J].Tele);
close(Data2);
for 1:=l to NI
do begin

for J:=i to N2
do begin

if JJ1I].Name=ATT(JJ.Name
then begin

Ctr: =Ctr+ 1;
with CoList[Ctr]
do begin

Name :=ATT(JJ .Name;
Tele:=ATT[J] .Tele

-end;
end

end
end;

writeln(' ** THE COMMON CUSTOMERS ***)
for 1:=l to Ctr

-do begin
with CoLlst[I] do
writeln(' ',I,' ',Name,Tele)

end
END.

C**** PROGRAM FORTRAN6 (10/20/'86)

CHARACTER*15 BELL,RCA, COLIST
INTEGER I,J,K,CTR
INTEGER*4 TELl ,TEL2,COTEL
DIMENSION BELL(2),RCA(3),COLIST(2)
DIMENSION TELl(2),TEL2(3),COTEL(2)
CTR=O
OPEN(20,FILE='DATA1. 1')
OPEN(21,FILE='DATA2. 1')
DO 100 I=1,2
READC2O.10) BELL(I)
READ(20,20) TELICI)

10 FORMAT(A)
20 FORMAT(I11)
100 CONTINUE

DO 200 J=1,3
READ(21,10) RCA(J)
READ(21,20) TEL2(J)

110 FORNAT(A)
120 FORMAT(I11)
200 CONTINUE
210 DO 300 I=1.2

DO 300 J=1,3
IF (.NOT. (BELL(I).EQ.RCA(J))) GOTO 300
CTR=CTR+ I
COLIST(CTR)=RCA(J)
COTEL(CTR)=TEL2(J)

300 CONTINUE
WRITE(*,*) ' **THE COMMON CUSTOMERS**'
DO 500 K=I,CTR
WRITE(*,*) ' ',K,COLIST(K),' ',COTEL(K)

500 CONTINUE
STOP

600 WRITE(*,*) 'NO SUCH FILE'
END

Appendix C. Texts of Pascal and Fortran programs
that belong to the "RTRDP" plan group (9 pages).

L

PROGRAM Pas7;(1O/09/'86)
TYPE

LogType =record

Date :string f83;
IDNo :string [9);

PassWd : string E7];
Account :real

end;
VAR

TempA :real;
Loglan LogType;
KeyS,TeapD :string (12];
Key :char;
I,J,NoKey :integer;p
DataC :text;

BEGIN
assign(DataC, 'datac.2');
reset(DataC);
with LogIn do readln(DataCDate,IDNo,PassWd,Account);
close(DataC);
TeapD:=Logln.Date;
TeapA: =Logln .Account;
for I:=1 to 10 do writein;
write(' Date
readln(Logln.Date);
write(' *ID No.:
readln(KeyS);
if KeyS 0 Logln.IDNo then
begin

writeln(chr(007),' !!1 WRONG ID No., TRY AGAIN IUI'l);
write(' *ID No.:)
repeat readln(KeyS) until KeyS =Logln.IDNo

end;
write(' *Password :)
readln(KeyS);
if KeyS 0 Logln.PassWd then
begin

writeln(chr(007),' !!WRONG NUMBER, TRY AGAIN H!)
write(' *Password:)
repeat readln(KeyS) until KeyS =Logln.PassWd

end;
cl rscr;
for I:=1 to 10 do writeln;
writeln(' *RECORD OF ',Logln.IDNo,'*'
wr itel n;
writeln(' DATE of last time :',TempD:9);
writeln(' MONEY left . ,TempA:9);
writeln;writeln;writeln;
write ln(' - HIT SPACE TO CONTINUE)--');
repeat read(Key) until Key '

clrscr;
for I:=1 to 7 do writeln;
writeln(' OPTIONS :');
writeln;writeln;
write ln(' P I Pascal');
writeln(' C I :C language');
writeln(' I Z I Zbasic');
writeln(' C L I Lisp');
writeln(' I Q I Quit');
writeln;writeln;write(' >)

repeat read(Key) until Key In [pczlPFCZLI
clrscr;
for 1:=I to 10 do writeln;

',c :writeln(' ** NICE TO MEET YOU IN "C"***)
',' :wrjteln(' **** WELCOME TO Zbasic ****');
L'l :writeln(' *** NICE TO MEET YOU IN LISP**'

end;
if Key in ('Q','q'J then
else repeat read(Key) until Key in ('Q','q'];
clrscr;
LogIn.Account:=Logln.Account-o. 3;
for I:=I to 10 do writein;
writeln(' Date :',Logln.Date:9);
writeln(' MONEY left :',Logln.Account:9);
writeln;writeln;
writeln(' ----- GOOD BYE ------ 1

END.

C*** PROGRAM FORTRAN? (10/29/'86)
INTEGER IJ,NOKEY
REAL TEMPA,ACCOUNT
CHARACTER KEY
CHARACTER*7 PASSWRD
CHARACTER*8 DATE
CHARACTER*, IDNO,KEYS,TEMPD
OPEN(20,FILE='DATAC.2')
READ(20,1O) DATE
READ(20,1O) IDNO
READ(20,1O) PASSWRD
READ(20,20) ACCOUNT

10 FORMAT(A)
20 FORMAT(F7.2)

TEMPD=DATE
TEMPA=ACCOUNT

100 WRITE(*,*) ' * DATE :
READ(*,10) DATE

150 WRITE(*,*) ' * ID NO : "
READ(*,10) KEYS
IF (KEYS .NE. IDNO) THEN
WRITE(*,*) ' H WRONG, PLEASE REENTER ! '

GOTO 150
ENDIF

200 WRITE(*,*) ' * PASSWORD
READ(*,10) KEYS
IF (KEYS .NE. PASSWRD) THEN
WRITE(*,*) ' ! WRONG, PLEASE REENTER H'
GOTO 200

ENDIF
WRITE(*,*) '
WRITE(*,*) ' * DTATE OF LAST ENTER : ',TEMPD
WRITE(*,*) ' * MONEY LEFT : ',TEMPA
WRITE(*,*) '
WRITE(*,*) " * OPTIONS
WRITE(*,*) ' 0 1 : ZBASIC'
WRITE(*,*) ' I : PASCAL'
WRITE(*,*) ' (2] : LISP'
WRITE(*,*) ' I Q I : QUIT'
WRITE(*,*) '
READ(*,*) NUMKEY
IF (NUMKEY .EQ. 2) NUMKEY=-1
IF (NUMKEY) 310,320,330

310 WRITE(*,*)' *** WELCOME TO LISP ***'
GOTO 400

320 WRITE(*,*)' *** WELCOME TO ZBASIC ***'
GOTO 400

330 WRITE(*,*)' *** WELCOME TO PASCAL ***'
400 READ(*,1O) KEY

IF (KEY .NE. 'Q') GOTO 400
ACCOUNT=ACCOUNT-3.00
WRITE(*,*) '
WRITE(*,*) ' * DATE : ',DATE
WRITE(*,*) ' * MONEY LEFT : ',ACCOUNT
WRITE(*,*) ' GOOD BYE

I

STOP
END

2

PROGRAM Pas8;(10/031'86)
ZONST

TriNo =2;

VAR
PercntY,PercntN :real;
Key :char;
I,J,NoKey,SubNo,Num,ERRPostv,Negtv integer;
SaveKey array (1..TrlNo] of char;

BEGIN
repeat

read(Key);
val (Key,SubNoERR)

until SubNo in El..30];
for I:=1 to 10 do uritein;

WritelnC' !!! PLEASE LOOK AT FIXATION POINT AFTER HITTING SPACE H'.
repeat read(Key) until Key
Num:=O;Postv: =0;Negtv:=O;
repeat

clrscr;
for I:=1 to 11 do writein;
wri teln(chr(007));
writeln('
for I:=1 to 300 do for J:=1 to 300 do;
clrscr;
for I:=1 to 10 do wrlteln;
writeln(' AHNX');
writeln(' PRED');
wr iteln(' OCSU');
for I:=I to 5000 do;
clrscr;
for I:=1 to 200 do for J:=1 to 200 do;
for I:=1 to 11 do writein;
write(' ** Is "P" in second line (YIN) ?')
repeat read(Key) until Key In ('Y','N,'y','n'];
Num: =Num+ 1;
SaveKeytNum] :=Key;
If SaveKey[Num] In 1'Y','y'J then Postv:=Postv+l;
if SaveKey(Num] In ['N','n'] then Negtv:=Negtv+l

until Num = TrlNo;
PercntY: =Postv/TrlNo;
PercntN: =Negtv/TrlNo;
clrscr;
for I:=1 to 10 do writeln;
writeln(' *** RESULT****'
write in; writein;
writeln(' Percentage of Yes response =',PercntY:9);
wrlteln(' Percentage of No respinse =',PercntN:9)

IND.

C*** PROGRAM FORTRAN8 (10/23/'86)
CHARACTER*l KEY
INTEGER I ,J,SUBNOV,NUM
REAL Y,N,POSTV,NEGTV
WRITE(*,*) 'NO. OF SUBJECT V
READ(*,5) KEY

5 FORMAT(A)
DO 10 I=1,20
WRITE(*,5)

10 CONTINUE
WRITE(*,*)'tlt PLEASE FIXATE AT THE SCREEN !'
POSTV= 0
NEGTV-0
DO 400 J=1,2
DO 20 I=1,20
WRITE(*,*)

20 CONTINUE
DO 25 I=1.19000

25 CONTINUE
WRITE(*,*) 'AHNX'

WRITE(*,*) 'PRBD'

WRITE(*,*) 'OCSU,

DO 27 I=1,29000
27 CONTINUE

DO 30 1=1,50
WRITE(*.*)

30 CONTINUE
WRITE(*,*) ' ?? IS [P) IN THE FIRST LINE?'

35 READ(*,5) KEY
IF ((KEY.NE.'Y').AND.(KEY.NE.'N')) GOTO 35
IF (KEY.EQ.'Y') THEN
POSTV=POSTV+ 1

ELSE
NEGTV=NEGTV+ I

ENDIF
400 CONTINUE

Y=POSTV/2
N=NEGTV/2
DO 600 I=1,20
WRITE(*, *)

600 CONTINUE
WRITE(*,*)' RESULT
WRITE(*,605)

605 FORMAT(//)
WRITE(*,610) Y

610 FORMAT(' PERCENTAGE OF YES RESPONSE=',F5.2)
WRITE(*,620) N

620 FORMAT(' PERCENTAGE OF NO RESPONSE=',F5.2)
STOP
END

PROGRAM Pas9;(1O/08/'861
rYPE

AccnType = record
Date :string [8];
Name :string (12];

PassWd :string [71;
Balance :real

end;

VAR
TempB,Amount :real;
Account :AccnType;
KeyS,TeapD :string (12];
Key :char;
I,J,ERR,NoKey :Integer;
DataC :text;

BEGIN
assign(DataC, 'datac');
reset(DataC);
with Account do readln(DataC,Date,Name,PassWd,Balance);
close(DataC);
writelnCAccount .Date ,Account.Name ,Account.PassWd,Account.Balance)
TempB: -Account .Balance;
TempD: -Account. Date;
for I:=I to 10 do writeln;
write(' *Date:)
readinCAccount .Date);
write(' *Name:

readln(KeyS);
If KeyS 0 Account.Name then
begin

writeln(chr(O07),' H!WRONG NAME, TRY AGAIN !H)
write(' *Name:)
repeat readln(KeyS) until KeyS =Account.Name

end;
write(' *Password:)
readln(KeyS);
If KeyS 0 Account.PassWd then
begin

writeln(chr(007),' # WRONG NUMBER, TRY AGAIN !!)
write(' *Password :');
repeat readln(KeyS) until KeyS =Account.PassWd

end;
clrscr;
for I:=I to 10 do writeln;
writeln(' RECORD OF ',Account.Name,' *');
write ln;
writeln(' DATE of last time :',TempD:9);
writeln(' BALANCE :',Account.Balance:9);
writeln;wrlteln;writeln;
vriteln(' - HIT SPACE TO CONTINUE)--');
repeat read(Key) until Key '

clrscr;
for I:=i to 7 do writeln;
writeln(' OPTIONS :');
write ln;writeln;
writeln(I + I] receive money');
writeln(' I : deposit');
writeln;writeln;writec'
repeat readCKey) until Key In I +,-,/]

write(' I 1)
readln(Amount);
case Key of

ci rscr;
for I:1l to 10 do writein;
writeln(' RECORD OF ',Account.NameD' ')
wr itel n;-
wrlteln(' DATE :',Account.Date:9);
writeln(' BALANCE :',Account.Balance:9);
wr ite in; write in;
writein(' ***** THANKS *****'

END.

C*** PROGRAM FORTRAN9 (10/22/'86)

CHARACTER KEY
CHARACTER*7 PASWRD
CHARACTER*8 DATE
CHARACTER*12 NAME,KEYS,DTEMP
INTEGER I,J,NUMKEY
REAL BALNC,BTEMP,AMNT
OPEN(20,FILE='DATAC')
READ(20, 10) DATE
READ(20,10) NAME
READ(20, 10) PASWRD
READ(20,15) BALNC

10 FORMAT(A)
15 FORMAT(F8.2)

WRITE(*,*) DATE,NAME,BALNC
BTEMP=BALNC
DTEMP=DATE
WRITE(*,*) ' * DATE :
READ(*,10) DATE

20 WRITE(*,*) ' * NAME :
READ(*,10) KEYS
IF (KEYS .NE. NAME) THEN
WRITE(*,*) ' !! WRONG,PLEASE REENTER !!
GOTO 20

ENDIF
30 WRITE(*,*) ' * PASSWORD

READ(*,10) KEYS
IF (KEYS .NE. PASWRD) THEN
WRITE(*,*) ' ! WRONG,PLEASE REENTER H'
GOTO 30

ENDIF
WRITE(*,*) '

WRITE(*,*) ' * DATE OF LAST ENTER ',DTEMP
WRITE(*,*) ' * BALANCE : ',BALNC
WRITE(*,*) '
WRITE(*,*) ' * OPTIONS :'
WRITE(*,*) ' I 1] RECEIVE MONEY'
WRITE(*,*) ' [0 1 : DEPOSIT'
WRITE(*,*) '
READ(*,*) NUMKEY

100 READ(*,15) AMNT
IF (NUMKEY) 100,200,300

200 BALNC=BALNC-AMNT
300 GOTO 400
300 BALNC=BALNC+AMNT
400 WRITE(*,*) '

WRITE(*,*) ' , RECORD OF ',NAME,' ,'
WRITE(*,*) ' DATE : ',DATE

WRITE(*,*) ' BALANCE : ',BALNC
WRITE(*,*) ' ************* THANKS *************'
STOP
END

Office of Naval Research
Perceptual Science Program - Code 1142PS

Technical Reports Distribution List (4 pages)

Dr. Earl Alluisi Dr. Stanley Collyer
Office of the Deputy Office of Naval Technology
Under Secretary of Defense Code 222

OUSDRE (E&LS) 800 North Quincy Street
Pentagon, Room 3D129 Arlington, VA 22217-5000
Washington, D. C. 20301

Commander
Naval Air System Command

DEPARTMENT OF THE NAVY Crew Station Design
NAVAIR 5313

Aircrew System Branch Washinton, D. C. 20361
System Engineering Test
Directorate Dean of the Academic

U.S. Naval Test Center Departments
Patuxent River, MD 20670 U.S. Naval Academy

Annapolis, MD 21402
Dr. Glen Allgaier
Artificial Intelligence Branch Director
Code 444 Technical Information
Naval Electronics Ocean System Division
Center Code 2627

San Diego, CA 92152 Naval Research Laboratory
Washington, DC 20375-5000

Mr. Philip Andrews
Naval Sea System Command Dr. Robert A.Fleming
Navsea 61R2 Human Factors Support Group
Washington, D. C. 20362 Naval Personnel Research &

Development Center
Mr. Norm Beck 1411 South Fern Street
Combat Control System Department Arlington, VA 22217-5000
Code 221
Naval Underwater System Center Dr. Sherman Gee
Newport, RI 02840 Command and Control

Technology (Code 221)
Dr. Lyle D. Broemeling Office of Naval Technology
Code l1ISP 800 N. Quincy Street
Office of Naval Research Arlington, VA 22217-5000
800 N. Quincy
Street Arlington, VA 22217-5000 Dr. Eugene E. Gloye

ONR Detachment
LCDR R. Carter 1030 East Green Street
Office of Chief Pasadena, CA 91106-2485
on Naval Operations

OP-933D3 Mr. Jeff Grossman
Washington D. C. 20350 Human Factors Laboratory

Code 71
Dr. L. Chmura Navy Personnel R&D Center
Computer Science & Systems San Diego, CA 92152-6800
Code 5592
Naval Research Laboratory
Washington, D. C. 20350

Dr. Charles Holland Dr. George Moeller
Office of Naval Research Human Factors Department
Code 1133 Naval Submarine Medical
800 N. Quincy Street Research Lab
Arlington, VA 22217-5000 Naval Submarine Base

Groton, CT 06340-5900
Huaman Factors Branch
Code 3152 CAPT W. Moroney
Naval Weapons Center Naval Air Development
China Lake, CA 93555 Center

Code 602
Human Factors Department Warminster, PA 18974
Code N-71
Naval Training System Center Dr. A. F. Norclo
Orlando, FL 32813 Computer Science & Systems

Code 5592
Human Factors Engineering Naval Research Laboratory
Code 441 Washington, D.C. 20301-5000
Naval Ocean System Center
San Diego, CA 92152 CDR James Offutt

Office of the Secretary of
CDR Thomas Jones Defense
Code 125 Strategic Defense
Office of Naval Research Initiative Organization
800 N. Quincy Street Washington, D.C. 20301-5000
Arlington, VA 22217-5000

* Perceptual Science Program
Mr. Todd Jones Office of Naval Research
Naval Air System Command Code I142PS
Code APC-2050 800 N. Quincy Street
Washington, DC 20361-1205 Arlinton, VA 22217-5000

Dr. Michael Letsky Dr. Randall P. Schumaker
Office of the Chief of Naval NRL A. I. Center
Operations (OP-O1B7) Code 7510
Washington, D. C. 20305 Naval Research Laboratory

Washington, DC 20375-5000
Lt Dennis McBride
Human Factors Branch LCDR T. Singer
Pacific Missle Test Center Human Factors Engineering
Point Mugu, CA 93042 Division

Naval Air Development
LCDR Thomas Mitchell Center
Code 55 Wasminster, PA 18974
Naval Postgraduate School
Monterey, CA 93940

Dr. A. L. Slafkosky DEPARTMENT OF THE AIR FORCE
Scientific Advisor
Commandant of the Marine Corps Mr. Charles Bates, Director
Washington, D. C. 20380 Human Engineering Division

USAF AMRL/HES
Mr. James Smith Wright-Patterson AFB
Code 121 OH 45433
Office of Naval Research
800 N. Quincy Street Dr. Kenneth R. Boff
Arlington, VA 22217-5000 AF AMRL/HE

Wright-patterson AFB
Special Assistant for Marine OH 45433
Corps Matters

Code OOMC
Office of Naval Research OTHER GOVERNMENT AGENCIES
800 N. Quincy Street
Arlington, VA 22217-5000 ** Defense Technical

Information Center
Mr. H. Talkington Cameron Station, Bldg. 5
Engineering & Computer Science Alexandria, VA 22314
Code 09
Naval Ocean System Center Dr. Clinton Kelly
San Diego, CA 92152 Defense Advanced Research

Projects Agency
1400 Wilson Blvd.

DEPARTMENT OF THE ARMY Arlington, VA 22209

Director, Organization and Dr. Alan Leshner
Systems Research Laboratory Division of Behavior and

U.S. Army Research Institute Neural Science
5001 Eisenhower Avenue National Science Foundation
Alexandria, VA 22333-5600 1800 G. Street, N.W.

Washington, D.C. 20550

Dr. Edgar M. Johnson Dr. M. C. Montemerlo
Technical Director Information Science &
U.S. Army Research Institute Human Factors, Code RC
Alexandria, VA 22333-5600 NASA HQS

Washington, D.C. 20546
Dr. Milton S. Katz
Director, Basic Research
Army Research Institute OTHER ORGANIZATIONS
5001 Eisenhower Avenue
Alexandria, VA 22333-5600 Dr. Deborah Boehm-Davis

Department of Psychology
Technical Director George Manson University
U.S. Army Human Engineering 4400 University Drive
Laboratory Fairfax, VA 22030

Aberdeen Proving Ground, MD 21005

Dr. Stanley Deutsch Dr. Richard Pew
NAS-National Research Council Bolt Bernek & Newman, Inc.
(COHF) 10 Moulton Street
2101 Constitution Avenue, N.W. Cambridge, MA 02238
Washington, D.C. 20418

Dr. William B. Rouse
Dr. Bruce Hamill School of Industrial and
The Johns Hopkins University System Engineering
Applied Physics Lab Georgia Institute of
Laurel, MD 20707 Technology

Atlanta, GA 30332
Dr. James H. Howard, Jr.
Department of Psychology
Catholic University
Washington, D.C. 20064 *** END OF LIST ***

Ms. Bonnie E. John
Department of Psychology * 3 copies needed
Carnegie-Mellon University ** 2 copies needed
Pittsburgh, PA 15213

Dr. Thomas G. Moher
Department of Electrical
Engineering & Computer Science

University of Illinois at Chicago
P.O. Box 4348
Chicago, IL 60680

Dr. Allen Newell
Department of Computer Science
Carnegie-Mellon University
Pittsburgh, PA 15213

Dr. Jesse Orlansky
Institute for Defense Analysis
1801 N. Beauregard Street
Alexandria, VA 22311

ILM~ml

